Abstract

The need for rapid, sensitive and effective identification and quantitation of drugs and metabolites to accelerate drug discovery and development has given MS its central position in drug metabolism and pharmacokinetic research. This review attempts to orient the readers with respect to hybrid Q-TOF MS, which enables accurate mass measurement and generates information-rich datasets. The key properties of the Q-TOF MS system, including mass accuracy, resolution, scan speed and dynamic range, are herein discussed. Developments on tandem separation techniques (e.g., UHPLC(®) and ion mobility spectrometry), data acquisition and data-mining methods (e.g., mass defect, product/neutral loss, isotope pattern filters and background subtraction) that facilitate qualitative and quantitative analysis are then examined. The performance and versatility of LC-Q-TOF MS are thoroughly illustrated by its applications in metabolite identification and quantitative bioanalysis. Future perspectives are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.