Abstract

This chapter describes how to design and conduct experiments to deliver siRNA to adherent mammalian cells in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles. These magnetic complexes are targeted to the cell surface by the application of a magnetic gradient field. In this chapter, first we describe the synthesis of magnetic nanoparticles for magnetofection and the association of siRNA with the magnetic components of the transfection complex. Second, a simple protocol is described in order to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Third, protocols are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA, magnetofection, downregulation of gene expression, and the determination of cell viability. The addition of INF-7 peptide, a fusogenic peptide, to the magnetic transfection triplexes improved gene silencing in HeLa cells. The described protocols are also valuable for screening vector compositions and novel magnetic nanoparticle preparations to optimize siRNA transfection by magnetofection in every cell type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.