Abstract

As one of the key components of supercapacitors, electrolyte is intensively investigated to promote the fast development of the energy supply system under extremely cold conditions. However, high freezing point and sluggish ion transport kinetics for routine electrolytes hinder the application of supercapacitors at low temperatures. Resultantly, the liquid electrolyte should be oriented to reduce the freezing point, accompanied by other superior characteristics, such as large ionic conductivity, low viscosity and outstanding chemical stability. In this review, the intrinsically physical parameters and microscopic structure of low-temperature electrolytes are discussed thoroughly, then the previously reported strategies that are used to address the associated issues are summarized subsequently from the aspects of aqueous and non-aqueous electrolytes (organic electrolyte and ionic liquid electrolyte). In addition, some advanced spectroscopy techniques and theoretical simulation to better decouple the solvation structure of electrolytes and reveal the link between the key physical parameters and microscopic structure are briefly presented. Finally, the further improvement direction is put forward to provide a reference and guidance for the follow-up research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.