Abstract

Currently, advancements in separator technology for lithium-ion batteries (LIBs) have been developed due to their widespread use and key role in ion transportation. Nevertheless, there is still a need for ensuring the operation safety, service life, and user's experience of the batteries. In order to avoid the safety issues caused by the elevating temperature during working process, it is essential to endow separators with thermal shutdown function, which can timely cut off the current and prevent the electrodes from contacting. At the same time, the demand for recycling and sustainability of separators are also growing. Therefore, functional separators with irreversible or reversible thermal shutdown ability came out for future utility and manufacture. In this review, we aim to provide a comprehensive analysis of the technologies employed to enhance the safety of LIBs via highlighting the recent achievements in separators with irreversible thermal protection fabricated by different methods and mechanisms. Moreover, we summarize the intelligent materials that are able to take actions and self-adapt in reversibly thermal protection separators. Current research directions and challenges associated with the use of these LIBs separators and future perspectives in battery thermal protection are also provided. We hope such a review could provide inspiration for the separator researches dedicated on the cyclic utilization, high safety and high performance for future battery developments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.