Abstract

Over the last decade, lead halide perovskites have attracted significant research attention in the field of photovoltaics, light-emitting devices, photodetection, ionizing radiation detection, etc, owing to their outstanding optoelectrical properties. However, the commercial applications of lead-based perovskite devices are restricted due to the poor ambient stability and toxicity of lead. The encapsulation of lead-based devices can reduce the possible leakage of lead. However, it is hard to ensure safety during large-scale production and long-term storage. Recently, considerable efforts have been made to design lead-free perovskites for different optoelectronic applications. Metal halide double perovskites with the general formula of A2MIMIIIX6 or A2MIVX6 could be potentially considered as green and stable alternatives for different optoelectronic applications. In this review article, we focus on the recent progress and findings on lead-free halide double perovskites for x-ray and UV–vis photodetection applications. Lead-free halide double perovskite has recently drawn a great deal of attention for superior x-ray detection due to its high absorption coefficient, large carrier mobility-lifetime product, and large bulk resistance. In addition, these materials exhibit good performance in photodetection in the UV–vis region due to high photocarrier generation and efficient carrier separation. In this review, first, we define the characteristics of lead-free double perovskite materials. The fundamental characteristics and beneficial properties of halide perovskites for direct and indirect x-ray detection are then discussed. We comprehensively review recent developments and efforts on lead-free double perovskite for x-ray detection and UV–vis photodetection. We bring out the current challenges and opportunities in the field and finally present the future outlook for developing lead-free double perovskite-based x-ray and UV–vis photodetectors for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.