Abstract

The interface engineering of two-dimensional (2D) transition-metal dichalcogenides (TMDs) has been regarded as a promising strategy to modulate their outstanding electrical and optoelectronic properties because of their inherent 2D nature and large surface-to-volume ratio. In particular, introducing organic molecules and polymers directly onto the surface of TMDs has been explored to passivate the surface defects or achieve better interfacial properties with neighboring surfaces efficiently, thus leading to great opportunities for the realization of high-performance TMD-based applications. This review provides recent progress in the interface engineering of TMDs with organic molecules and polymers corresponding to the modulation of their electrical and optoelectronic characteristics. Depending on the interfaces between the surface of TMDs and dielectric, conductive contacts or the ambient environment, we present various strategies to introduce an organic interlayer from materials to processing. In addition, the role of native defects on the surface of TMDs, such as adatoms or vacancies, in determining their electrical characteristics is also discussed in detail. Finally, the future challenges and opportunities associated with the interface engineering are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.