Abstract

Tumor-targeted delivery of imaging nanoprobes provides a promising approach for the precision imaging diagnosis of cancers. Nanoprobes with desired bio-nano interface properties can preferably enter tumor tissues through the vascular endothelium, penetrate into deep tissues, and detect target lesions. Surface engineering of nanoparticles offers a critical strategy to improve tumor-targeting capacities of nanoprobes. Improvements to the efficacy of targeted nanoprobes have been intensively explored and much of this work centers on the selection of suitable targeting ligands. Herein, in this review, various recent strategies based on different targeting ligands to improve tumor-targeting of imaging nanoprobes have been developed, ranging from small molecule ligands to biomimetic coatings, with highlights on emerging coating techniques using cell membranes and dual-targeting ligands. In particular, construction and surface modification methods, targeting capacities, and imaging/theranostic performance with key issues and potential questions have been described and discussed together with considerations for future development and innovations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call