Abstract
Hypoxia is an inherent physiologic barrier in the microenvironment of solid tumor and has badly restricted the therapeutic effect of photodynamic therapy (PDT). Meanwhile, the photosensitizer (PS) agents used for PDT applications regularly encounter the tiresome aggregation-caused quenching effect that seriously decreases the production efficiency of cytotoxic reactive oxygen species. The aggregation-induced emission (AIE) PSs with antiquenching characteristics in the aggregate state are considered as a promising tool for achieving highly efficient PDT applications, and plenty of studies have widely demonstrated their advantages in various diseases. Herein, the recent progress of AIE PSs in the battle of antitumor hypoxia issue is summarized and the practical molecular principles of hypoxia-overcoming AIE PSs are highlighted. According to the hypoxia-overcoming mechanism, these representative cases are divided into low O2 -dependent (type I PDT) and O2 -dependent tactics (mainly including O2 -enrichment type II PDT and combination therapy). Furthermore, the underlying challenges and prospects of AIE PSs in hypoxia-overcoming PDT are proposed and thus expect to promote the next development of AIE PSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.