Abstract

Lithium-sulfur (Li-S) batteries are considered as one of the most potential next-generation rechargeable batteries due to their high theoretical energy density. However, some critical issues, such as low capacity, poor cycling stability, and safety concerns, must be solved before Li-S batteries can be used practically. During the past decade, tremendous efforts have been devoted to the design and synthesis of electrode materials. Benefiting from their tunable structural parameters, hollow porous carbon materials (HPCM) remarkably enhance the performances of both sulfur cathodes and lithium anodes, promoting the development of high-performance Li-S batteries. Here, together with the templated synthesis of HPCM, recent progresses of Li-S batteries based on HPCM are reviewed. Several important issues in Li-S batteries, including sulfur loading, polysulfide entrapping, and Li metal protection, are discussed, followed by a summary on recent research on HPCM-based sulfur cathodes, modified separators, and lithium anodes. After the discussion on emerging technical obstacles toward high-energy Li-S batteries, prospects for the future directions of HPCM research in the field of Li-S batteries are also proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.