Abstract

In this study, graphitic carbon nitride (g-C3N4) was extensively utilized as an electron transport layer or interfacial buffer layer for simultaneously realizing photoelectric performance and stability improvement of perovskite solar cells (PSCs). This review covers the different g-C3N4 nanostructures used as additive and surface modifier layers applied to PSCs. In addition, the mechanism of reducing the defect state in PSCs, including improving the crystalline quality of perovskite, passivating the grain boundaries, and tuning the energy level alignment, were also highlighted in this review. Currently, the power conversion efficiency of PSCs based on modified g-C3N4 has been increased up to 22.13%, and its unique two-dimensional (2D) package structure has enhanced the stability of PSCs, which can remain stable in the dark for over 1500 h. Finally, the potential challenges and perspectives of g-C3N4 incorporated into perovskite-based optoelectronic devices are also included in this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.