Abstract

Many important biological species have been identified as cancer biomarkers and are gradually becoming reliable targets for early diagnosis and late therapeutic evaluation of cancer. However, accurate quantitative detection of cancer biomarkers remains challenging due to the complexity of biological systems and the diversity of cancer development. Fluorescent probes have been extensively utilized for identifying biological substances due to their notable benefits of being non-invasive, quickly responsive, highly sensitive and selective, allowing real-time visualization, and easily modifiable. This review critiques fluorescent probes used for detecting and imaging cancer biomarkers over the last five years. Focuses are made on the design strategies of small-molecule and nano-sized fluorescent probes, the construction methods of fluorescence sensing and imaging platforms, and their further applications in detection of multiple biomarkers, including enzymes, reactive oxygen species, reactive sulfur species, and microenvironments. This review aims to guide the design and development of excellent cancer diagnostic fluorescent probes, and promote the broad application of fluorescence analysis in early cancer diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call