Abstract
The large-scale application of ecofriendly polymeric materials has become a key focus of scientific research with the trend toward sustainable development. Mechanical properties and fire safety are two critical considerations of biopolymers for large-scale applications. Polylactic acid (PLA) is a flammable, melt-drop carrying, and strong but brittle polymer. Hence, it is essential to achieve both flame retardancy and mechanical enhancement to improve safety and broaden its application. This study reviews the recent research on the flame retardant functionalization and mechanical reinforcement of PLA. It classifies PLA according to the type of the flame retardant strategy employed, such as surface-modified fibers, modified nano/micro fillers, small-molecule and macromolecular flame retardants, flame retardants with fibers or polymers, and chain extension or crosslinking with other flame retardants. The functionalization strategies and main parameters of the modified PLA systems are summarized and analyzed. This study summarizes the latest advances in the fields of flame retardancy and mechanical reinforcement of PLA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.