Abstract

Esthetic wires are commonly used in orthodontic treatments. Surface roughness is an important factor in the friction and bacterial adhesion in these wires. Surface roughness of esthetic wires has not been assessed, except in a few recent (mostly qualitative esthetics) studies. The aim of this study was to quantitatively compare the surface roughness of 4 coated esthetic wires with that of a conventional orthodontic wire.In this in vitro trial, 25 coated and uncoated orthodontic archwires were studied, including: NiTi Memory wire (American Orthodontics, USA) as a control group; Orthocosmetic Elastinol (Ortho Organizers, USA); Perfect (Hubit, Korea); Imagination (Gestenco, Sweden); EverWhite (American Orthodontics, USA). All were .016 × .022” rectangular maxillary wires. Fifteen millimeters of wire was cut off at the posterior end and a surface area of 2000 × 2000 nm was probed using a Scanning Probe Microscope (DS95-50E/DME, Denmark) to determine the surface roughness values. The roughness parameters of Sa, Sdq, Sv and Sy were measured and statistically compared by Kruskal-Wallis and Mann-Whitney U tests.The average range of the 4 parameters was the highest for the uncoated Ni-Ti Memory wire (control group) while the Perfect coated wire showed the lowest values. The differences were significant for parameters Sa and Sy (P < 0.02 and P < 0.023) and non-significant for Sv and Sdq. Significant differences existed between uncoated and coated wires regarding Sa and Sy values (P < 0.01), being higher for the uncoated wires.Taking into account the study limitations, the surface roughness values of NiTi uncoated archwires were significantly higher than those of the coated wires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.