Abstract

The real-time detecting and monitoring of ethylene gas molecules could benefit the agricultural, horticultural and healthcare industries. In this regard, we comprehensively review the current state-of-the-art ethylene gas sensors and detecting technologies, covering from preconcentrator-equipped gas chromatographic systems, Fourier transform infrared technology, photonic crystal fiber-enhanced Raman spectroscopy, surface acoustic wave and photoacoustic sensors, printable optically colorimetric sensor arrays to a wide range of nanostructured chemiresistive gas sensors (including the potentiometric and amperometric-type FET-, CNT- and metal oxide-based sensors). The nanofabrication approaches, working conditions and sensing performance of these sensors/technologies are carefully discussed, and a possible roadmap for the development of ethylene detection in the near future is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.