Abstract

Recent advances in dynamical climate prediction at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS) during the last five years have been briefly described in this paper. Firstly, the second generation of the IAP dynamical climate prediction system (IAP DCP-II) has been described, and two sets of hindcast experiments of the summer rainfall anomalies over China for the periods of 1980–1994 with different versions of the IAP AGCM have been conducted. The comparison results show that the predictive skill of summer rainfall anomalies over China is improved with the improved IAP AGCM in which the surface albedo parameterization is modified. Furthermore, IAP DCP-II has been applied to the real-time prediction of summer rainfall anomalies over China since 1998, and the verification results show that IAP DCP-II can quite well capture the large scale patterns of the summer flood/drought situations over China during the last five years (1998–2002). Meanwhile, an investigation has demonstrated the importance of the atmospheric initial conditions on the seasonal climate prediction, along with studies on the influences from surface boundary conditions (e.g., land surface characteristics, sea surface temperature). Certain conclusions have been reached, such as, the initial atmospheric anomalies in spring may play an important role in the summer climate anomalies, and soil moisture anomalies in spring can also have a significant impact on the summer climate anomalies over East Asia. Finally, several practical techniques (e.g., ensemble technique, correction method, etc.), which lead to the increase of the prediction skill for summer rainfall anomalies over China, have also been illustrated. The paper concludes with a list of critical requirements needed for the further improvement of dynamical seasonal climate prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.