Abstract

Thermal management, including heating and cooling, plays an important role in human productive activities and daily life. Nevertheless, in the actual environment, almost all the ambient scenarios come with the challenge that the objects are located in a quite dynamic and variable environment, which includes fluctuations in aspects such as space, time, sunlight, season, and temperature. It is imperative to develop low-energy or even zero-energy thermal-management technologies with renewable and clean energy. In this review, we summarised the latest technological advances and the prospects in this burgeoning field. First, we present the fundamental principles of the daytime passive radiative cooling (PDRC) thermal management device. Next, In the domain of dual-mode systems, they are classified into various types based on the diverse mechanisms of transitioning between cooling and heating states, including electrical responsive, mechanical responsive, temperature responsive, and solution responsive. Furthermore, we conducted an in-depth analysis of the principles and design methodologies associated with these categories, followed by a comparative assessment of their performance in radiative cooling and solar heating applications. Finally, this review presents the challenges and opportunities of dynamic dual mode thermal management, while also identifying future directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.