Abstract

Herein, we aim to evaluate the photodetector performance of various nanostructured materials (thin films, 2-D nanolayers, 1-D nanowires, and 0-D quantum dots) in ultraviolet (UV), visible, and infrared (IR) regions. Specifically, semiconductor-based metal oxides such as ZnO, Ga2O3, SnO2, TiO2, and WO3 are the majority preferred materials for UV photodetection due to their broad band gap, stability, and relatively simple fabrication processes. Whereas, the graphene-based hetero- and nano-structured composites are considered as prominent visible light active photodetectors. Interestingly, graphene exhibits broad band spectral absorption and ultra-high mobility, which derives graphene as a suitable candidate for visible detector. Further, due to the very low absorption rate of graphene (2%), various materials have been integrated with graphene (rGO-CZS, PQD-rGO, N-SLG, and GO doped PbI2). In the case of IR photodetectors, quantum dot IR detectors prevails significant advantage over the quantum well IR detectors due to the 0-D quantum confinement and ability to absorb the light with any polarization. In such a way, we discussed the most recent developments on IR detectors using InAs and PbS quantum dot nanostructures. Overall, this review gives clear view on the development of suitable device architecture under prominent nanostructures to tune the photodetector performance from UV to IR spectral regions for wide-band photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.