Abstract

Recent progress in photocatalytic hydrogen generation reaction highlights the critical role of co-catalysts in enhancing the solar-to-fuel conversion efficiency of diverse band-matched semiconductors. Because of the compositional flexibility, adjustable microstructure, tunable crystal phase and facet, cobalt-based co-catalysts have stimulated tremendous attention as they have high potential to promote hydrogen evolution reaction. However, a comprehensive review that specifically focuses on these promising materials has not been reported so far. Therefore, this present review emphasizes the recent progress in the pursuing of highly efficient Co-based co-catalysts for water splitting, and the advances in such materials are summarized through the analysis of structure–activity relationships. The fundamental principles of photocatalytic hydrogen production are profoundly outlined, followed by an elaborate discussion on the crucial parameters influencingthe reaction kinetics. Then, the co-catalytic reactivities of various Co-based materials involving Co, Co oxides, Co hydroxides, Co sulfides, Co phosphides and Co molecular complexes, etc, are thoroughly discussed when they are coupled with host semiconductors, with an insight towards the ultimateobjective of achieving a rationally designed photocatalyst for enhancing water splitting reaction dynamics. Finally, the current challenge and future perspective of Co-based co-catalysts as the promising noble-metal alternative materials for solar hydrogen generation are proposed and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.