Abstract
AbstractDevelopment of chromium‐doped luminescent materials is pertinent to many emerging applications, ranging from agriculture, food industry to noninvasive health monitoring. The fundamental importance of chromium‐activated luminescent materials in the field of optics and biomedicine makes the rapid development of novel materials and relevant applications. Herein, the recent advances on the luminescence principle and photoluminescence (PL) optimization for Cr3+‐activated luminescent materials together with their potential applications are reviewed. The different types of most recently developed Cr3+‐doped luminescent materials and the design principles are systematically summarized. The associations between crystal structure and near‐infrared (NIR) PL properties, as well as performance‐evaluating parameters are introduced with the examples of known NIR emitting phosphors, which will be helpful to explore future NIR luminescent materials. Based on crystal field control, site engineering, and electron–phonon coupling, several efficient strategies for optimizing luminescence performances including bandwidth, thermal stability, and quantum efficiency of Cr3+‐doped NIR luminescent materials are proposed. Then, potential applications in the fields of food analysis, night vision, information encryption, and optical sensors are surveyed. Finally, the challenges of promising Cr3+‐doped luminescent materials are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.