Abstract

Carbon–carbon bond formation by [3,3]-sigmatropic rearrangement is a fundamental and powerful method that has been used to build organic molecules for a long time. Initially, Claisen and Cope rearrangements proceeded at high temperatures with limited scopes. By introducing catalytic systems, highly functionalized substrates have become accessible for forming complex structures under mild conditions, and asymmetric synthesis can be achieved by using chiral catalytic systems. This review describes recent breakthroughs in catalytic [3,3]-sigmatropic rearrangements since 2016. Detailed reaction mechanisms are discussed to enable an understanding of the reactivity and selectivity of the reactions. Finally, this review is inspires the development of new cascade reaction pathways employing catalytic [3,3]-sigmatropic rearrangement as related methodologies for the synthesis of complex functional molecules.

Highlights

  • We summarize the developments in the catalytic Claisen and Cope rearrangements since 2016

  • We describe the detailed mechanism of transition metal-mediated reactions in order to provide deeper understanding of the specific reactivity of metals as well as the regio- and stereoselective pathways

  • 2016, they achieved the kinetic resolution of racemic propargyl vinyl ethers by asymIn 2016, they achieved the kinetic resolution of racemic propargyl vinyl ethers asymmetric propargyl Claisen rearrangement in the presence of Ni(II) species and the chiral

Read more

Summary

Introduction

C. Cope in 1940 [8], Cope rearrangement, including the reaction with hetero-analogues, has been extensively studied for application in synthesis, as well as from the theoretical perspective [9,10,11]. Cope in 1940 [8], Cope rearrangement, including the reaction with hetero-analogues, has been extensively studied for application in synthesis, as well as from the theoretical perspective [9,10,11] Both representative [3,3]-sigmatropic rearrangements have remained powerful tools in organic synthesis for a long time, and a variety of catalytic versions of these rearrangement reactions were recently developed to achieve the highly reactive and enantioselective synthesis of functionalized molecules by overcoming the limits of the common thermal pathway [12,13,14,15].

Transition
Proposed
26. The ensuing proton
Plausible
Organocatalyzed Claisen Rearrangement
89. Intermediate
Catalytic
99. AzaClaisen rearrangement occurs through the
19. Copper-catalyzed
21. Pd-catalyzed
22. Pd-catalyzed
26. Ir-catalyzed
33. Synthesis
Organocatalyzed
Conclusions and and Outlooks
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.