Abstract

Over the past few decades, direct methanol fuel cells (DMFCs) have been intensively developed as clean and high-efficiency energy conversion devices. However, their dependence on expensive Pt-based catalysts for both the anode and the cathode make them unsuitable for large-scale commercialisation. The essential solution to addressing this shortfall is the development of low-Pt and non-Pt catalysts. Regarding this issue, considerable advances have been made with low-Pt alloys and core-shell-like catalysts, as well as non-platinum Pd–Me, Ru–Se and heat-treated MeNxCy-based catalysts. This perspective reviews potential pathways for increasing the cost-effectiveness and efficiency of these catalysts. Fundamental understanding of the composition–activity and structure–activity relationships, innovative synthesis, and promising developmental directions are highlighted. Regarding durability, the main degradation mechanism of these catalysts and the corresponding mitigating strategies are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.