Abstract

The thermal catalytic conversion of biomass is currently a prevalent method for producing activated carbon with superb textural properties and excellent adsorption performance. However, activated carbon suffers severely from its poor thermal stability, which can easily result in spontaneous burning. In contrast, silica material is famed for its easy accessibility, high specific surface area, and remarkable thermal stability; however, its broader applications are restricted by its strong hydrophilicity. Based on this, the present review summarizes the recent progress made in carbon-silica composite materials, including the various preparation methods using diverse carbon (including biomass resources) and silica precursors, their corresponding structure–function relationship, and their applications in adsorption, insulation, batteries, and sensors. Through their combination, the drawbacks of the individual materials are circumvented while their original advantages are maintained. Finally, several bottlenecks existing in the field of carbon-silica composites, from synthesis to applications, are discussed in this paper, and possible solutions are given accordingly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.