Abstract

Bioenergy has emerged to be among the primary choices for the short- and medium-term replacement of fossil fuels and the reduction in greenhouse gas (GHG) emissions. The most practical method for transforming biomass into biofuel is thermochemical conversion, which may be broken down into combustion, torrefaction, pyrolysis, hydrothermal liquefaction, and gasification. In this study, producing biofuels using a biomass pyrolysis process was investigated. This study explored the pyrolysis process and operating conditions to optimize the process parameters to maximize the desired product yields and quality. The pyrolysis process produces three main products, which are bio-oil, bio-char, and gas. There are three classifications for the pyrolysis method, with each of them producing a majority of a certain product. First, slow pyrolysis is conducted in the temperature range of 300–950 °C and residence time of 330–550 s. It produces around a 30% oil yield and 35% char yield, and thus, the majority yield of slow pyrolysis is char. Second, fast pyrolysis produces around 50% oil, 20% char, and 30% gas yields with a temperature range of 850–1250 °C and a residence time of 0.5–10 s. The average yield of flash pyrolysis was found to be 75% bio-oil, 12% bio-char, and 15% gas, which is conducted within less than 1 s. It was reported that the pyrolysis of biomass was simulated using ASPEN Plus, where the effects of several parameters, such as the temperature, heating rate, and residence time, on the product yield and composition were investigated. Pyrolysis was performed under different conditions ranging from 400 to 600 °C. The effects of different catalysts on the pyrolysis process were studied. It was found that the addition of a catalyst could increase the yield of bio-oil and improve the quality of the product. The optimal operating condition for the pyrolysis process was determined to be a temperature of 500 °C, which resulted in a higher bio-oil yield. It was found that the biofuel yield was enhanced by selecting appropriate raw materials, such as rice husk, along with the pyrolysis temperature (e.g., 450 °C) and particle size (350–800 µm), and using a low residence time and pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.