Abstract

Temporomandibular joint osteoarthritis (TMJOA) is a gradual degenerative jaw joint condition. Until recent years, TMJOA is still relatively unrecognized and ineffective to be treated. Appropriate animal models with reliable detection methods can help researchers understand the pathophysiology of TMJOA and find therapeutic options. In this study, we summarized common animal models of TMJOA created by chemical, surgical, mechanical, and genetical approaches. The relevant pathological symptoms and induction mechanisms were outlined. In addition, different pathological indicators, furthermore, emerging therapeutic regimens, such as intra-articular drug delivery and tissue engineering-based approaches to treat TMJOA based on these animal models, were summarized and updated. Understanding the physiology and pathogenesis of the TMJOA, together using various ways to diagnose the TMJOA, were elaborated, including imaging techniques, molecular techniques for detecting inflammatory cytokines, histochemical staining, and histomorphometry measures. A more reliable diagnosis will enable the development of new prevention and more effective treatment strategies and thereby improve the quality of life of TMJOA patients. Impact statement Temporomandibular joint osteoarthritis (TMJOA) affects 8 to 16 percent of the population worldwide. However, TMJOA is still relatively unrecognized and ineffective to be treated in the clinic. Appropriate animal models with reliable diagnostic methods can help researchers understand the pathophysiology of TMJOA and find therapeutic options. We herein summarized common animal models of TMJOA and various ways to diagnose the TMJOA. More importantly, emerging therapeutic regimens to treat TMJOA based on these animal models were summarized. With the aid of strategies listed, more effective treatment strategies will be developed and thereby improve the life quality of TMJOA patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.