Abstract

The discharge of heavy metal ions from industrial wastewater into natural water bodies is a consequence of global industrialisation. Due to their high toxicity and resistance to degradation, these heavy metal ions pose a substantial threat to human health as they accumulate and amplify. Alginate-based composite gels exhibit good adsorption and mechanical properties, excellent biodegradability, and non-toxicity, making them environmentally friendly heavy metal ion adsorbents for water with promising development prospects. This paper introduces the basic properties, cross-linking methods, synthetic approaches, modification methods, and manufacturing techniques of alginate-based composite gels. The adsorption properties and mechanical strength of these gels can be enhanced through surface modification, multi-component mixing, and embedding. The main production processes involved are sol-gel and cross-linking methods. Additionally, this paper reviews various applications of alginate composite gels for common heavy metals, rare earth elements, and radionuclides and elucidates the adsorption mechanism of alginate composite gels. This study aimed to provide a reference for synthesising new, efficient, and environmentally friendly alginate-based adsorbents and to contribute new ideas and directions for addressing the issue of heavy metal pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.