Abstract

Harmful algal blooms (HAB) including red tides and cyanobacteria are a significant environmental issue that can have harmful effects on aquatic ecosystems and human health. Traditional methods of detecting and managing algal blooms have been limited by their reliance on manual observation and analysis, which can be time-consuming and costly. Recent advances in machine learning (ML) technology have shown promise in improving the accuracy and efficiency of algal bloom detection and prediction. This paper provides an overview of the latest developments in using ML for algal bloom detection and prediction using various water quality parameters and environmental factors. First, we introduced ML for algal bloom prediction using regression and classification models. Then we explored image-based ML for algae detection by utilizing satellite images, surveillance cameras, and microscopic images. This study also highlights several real-world examples of successful implementation of ML for algal bloom detection and prediction. These examples show how ML can enhance the accuracy and efficiency of detecting and predicting algal blooms, contributing to the protection of aquatic ecosystems and human health. The study also outlines recent efforts to enhance the field applicability of ML models and suggests future research directions. A recent interest in explainable artificial intelligence (XAI) was discussed in an effort to understand the most influencing environmental factors on algal blooms. XAI facilitates interpretations of ML model results, thereby enhancing the models' usability for decision-making in field management and improving their overall applicability in real-world settings. We also emphasize the significance of obtaining high-quality, field-representative data to enhance the efficiency of ML applications. The effectiveness of ML models in detecting and predicting algal blooms can be improved through management strategies for data quality, such as pre-treating missing data and integrating diverse datasets into a unified database. Overall, this paper presents a comprehensive review of the latest advancements in managing algal blooms using ML technology and proposes future research directions to enhance the utilization of ML techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call