Abstract

Ammonia has been used in a wide variety of applications, and with the recent interest in hydrogen energy as a green energy source, it is emerging as a cost-effective, high-density hydrogen carrier due to its three hydrogen atoms. Currently, ammonia is produced by the Haber-Bosch method at high temperatures and pressure, which is energy-intensive and emits large amounts of carbon dioxide. As a viable alternative, the electrochemical conversion of nitrate to ammonia has emerged as an efficient and eco-friendly synthesis method. To encourage further exploration in this field, this review offers insights into utilizing two-dimensional materials as electrochemical catalysts, focusing on designs that exploit defects for nitrate reduction to ammonia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.