Abstract

We review the progress made in 11B solid-state nuclear magnetic resonance (SSNMR) spectroscopy of crystalline materials over the past 20 years, with a focus on the applications of 11B NMR observables in providing electronic and structural information. A brief description of some of the common SSNMR methods for measuring 11B chemical shift (CS) tensor parameters, electric field gradient (EFG) tensor parameters, and indirect spin–spin (J) coupling constants is first provided. Recent 11B SSNMR studies on crystalline boron systems, such as diboron compounds, boronic esters and acids, borates, and boron-containing Lewis acid/base adducts, are then summarized, and the corresponding experimentally obtained 11B NMR parameters are presented. In general, data from studies that only report isotropic CSs are not tabulated. Our survey highlights the ability of 11B SSNMR spectroscopy to provide an abundance of diverse chemical information, ranging from the coordination environment of the boron, to ligand identity, bond strengths, bond orders and bond angles, and the potential of this technique to characterize inorganic and organic crystalline solids. Owing to the sensitivity of 11B SSNMR spectroscopy to chemical structures and the suitability of the 11B nuclide for high-resolution techniques such as MQMAS and DOR, we anticipate that 11B SSNMR spectroscopy will continue to evolve as an indispensable tool for solid-state characterization of boron-containing systems and for the advancement of various fields, such as NMR crystallography, the synthesis of novel boron reagents, and the development of boron-based hydrogen storage materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.