Abstract
The goal of this paper is to review the state-of-the-art progress on visual tracking methods, classify them into different categories, as well as identify future trends. Visual tracking is a fundamental task in many computer vision applications and has been well studied in the last decades. Although numerous approaches have been proposed, robust visual tracking remains a huge challenge. Difficulties in visual tracking can arise due to abrupt object motion, appearance pattern change, non-rigid object structures, occlusion and camera motion. In this paper, we first analyze the state-of-the-art feature descriptors which are used to represent the appearance of tracked objects. Then, we categorize the tracking progresses into three groups, provide detailed descriptions of representative methods in each group, and examine their positive and negative aspects. At last, we outline the future trends for visual tracking research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.