Abstract

The gradually increasing complexity of the processing models and necessity to simulate in higher dimensions persistently challenge computational efficiency of the modern process simulators. In this paper, an outlook on the current status and trends in numerical techniques for efficient multidimensional bulk process simulation is given. Grid generation, grid adaptation, discretization and solving techniques are considered as the principle numerical building blocks of modern process simulation tools. The major task and obstacles for each of these numerical segments are recognized and some recently proposed techniques to circumvent current limitations as well as possible directions for future research are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.