Abstract

Recently, the newly-emerging lead-free metal-halide materials with less toxicity and superior optoelectronic properties have received wide attention as the safer and potentially more robust alternatives to lead-based perovskite counterparts. Among them, ternary copper halides (TCHs) have become a vital group due to their unique features, including abundant structural diversity, ease of synthesis, unprecedented optoelectronic properties, high abundance, and low cost. Although the recent efforts in this field have made certain progresses, some scientific and technological issues still remain unresolved. Herein, a comprehensive and up-to-date overview of recent progress on the fundamental characteristics of TCH materials and their versatile applications is presented, which contains topics such as: i) crystal and electronic structure features and synthesis strategies; ii) mechanisms of self-trapped excitons, luminescence regulation, and environmental stability; and iii) their burgeoning optoelectronic devices of phosphor-converted white light-emitting diodes (WLEDs), electroluminescent LEDs, anti-counterfeiting, X-ray scintillators, photodetectors, sensors, and memristors. Finally, the current challenges together with future perspectives on the development of TCH materials and applications are also critically described, which is considered to be critical for accelerating the commercialization of these rapidly evolving technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.