Abstract

Cellulose, starch, chitosan, polylactic acid, and polyhydroxyalkanoates are seen as promising alternatives to conventional plastics in food packaging. However, the application of these biopolymers in the food packaging industry on a commercial scale is limited due to their poor performance and processing characteristics and high production cost. This review aims to provide an insight into the recent advances in research that address these limitations. Loading of nanofillers into polymer matrix could improve thermal, mechanical, and barrier properties of biopolymers. Blending of biopolymers also offers the possibility of acquiring newer materials with desired characteristics. However, nanofillers tend to agglomerate when loaded above an optimum level in the polymer matrix. This article throws light on different methods adopted by researchers to achieve uniform dispersion of nanofillers in bionanocomposites. Furthermore, different processing methods available for converting biopolymers into different packaging forms are discussed. In addition, the potential utilization of agricultural, brewery, and industrial wastes as feedstock for the production of biopolymers, and integrated biorefinery concept that not only keep the total production cost of biopolymers low but are also environment-friendly, are discussed. Finally, future research prospects in this field and the possible contribution of biopolymers to sustainable development are presented. This review will certainly be helpful to researchers working on sustainable food packaging, and companies exploring pilot projects to scale up biopolymer production for industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call