Abstract

Cancer nanomedicine has the potential to take advantage of the multifunctionality and diverse biological activity of nanostructures based on biomolecules. Novel drug delivery vehicles can be designed by programming the supramolecular features of biomolecules to achieve multiple therapeutic goals at once, including efficient in vivo transport and targeted drug administration. Proteins, peptides, nucleic acids, and polysaccharides can all be engineered into multipurpose nanomedicines. Even while numerous cancer medications reduce mortality, they are still insufficient. Early cancer cell detection and high-specificity therapeutic administration optimise treatment and prevent toxicity. Nanotechnology is improving cancer diagnosis and treatment due to increased systemic toxicity and refractoriness with current methods. Nanotechnology-based immunotherapeutic drugs have reduced cancer cell invasiveness while protecting healthy cells in several cancer types. Carbon nanotubes, polymeric micelles, and liposomes improve cancer medication pharmacokinetics and pharmacodynamics. Nanomedicines' use in patient care and promising nanotechnology-based cancer interventions have been covered in this article. Nanomaterials used in treating cancer have been discussed. Additionally, nanomaterial obstacles that hinder their applicability and clinical translation in certain cancer types are addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.