Abstract
Recently, there has been a notable rise in the prevalence of persistent pollutants in the environment, posing a significant hazard due to their toxicity and enduring nature. Conventional wastewater treatment methods employed in treatment plants rarely address these persistent pollutants adequately. Meanwhile, the concept of green synthesis has garnered considerable attention, owing to its environmentally friendly approach that utilizes fewer toxic chemicals and solvents. The utilization of materials derived from sustainable sources presents a promising avenue for solving pressing environmental concerns. Among the various sources of biological agents, plants stand out for their accessibility, eco-friendliness, and rich reserves of phytochemicals suitable for material synthesis. The plant extract-mediated synthesis of zinc oxide nanoparticles (ZnONPs) has emerged as a promising solution for applications in wastewater treatment. Thorough investigations into the factors influencing the properties of these green ZnONPs are essential to establish a detailed and reliable synthesis process. Major weaknesses inherent in ZnONPs can be addressed by changing the optical, magnetic, and interface properties through doping with various semiconductor materials. Consequently, research efforts to mitigate water pollution are being driven by both the future prospects and limitations of ZnO-based composites. This review underscores the recent advancements of plant extract-mediated ZnONP composites for water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.