Abstract
In tissue engineering, polyurethane-based implants have gained significant traction because of their high compatibility and inertness. The implants therefore show fewer side effects and lasts longer. Also, the mechanical properties can be tuned and morphed into a particular shape, owing to which polyurethanes show immense versatility. In the last 3 years, scientists have devised methods to enhance the strength of and induce dynamic properties in polyurethanes, and these developments offer an immense opportunity to use them in tissue engineering. The focus of this review is on applications of polyurethane implants for biomedical application with detailed analysis of hard tissue implants like bone tissues and soft tissues like cartilage, muscles, skeletal tissues, and blood vessels. The synthetic routes for the preparation of scaffolds have been discussed to gain a better understanding of the issues that arise regarding toxicity. The focus here is also on concerns regarding the biocompatibility of the implants, given that the precursors and byproducts are poisonous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.