Abstract
Objectives An autoimmune-mediated dermatological ailment featuring recurrent episodes is acknowledged as psoriasis. Around the world, 2-3% of people suffer from this autoimmune skin condition. The primary goal of the current review is to analyse and determine the effectiveness of conventional and emerging nano technological strategies to alleviate psoriasis and discuss future perspectives. Evidence acquisition A thorough search of numerous electronic databases, including Science Direct, Scopus, Google Scholar, Clinical Trials, Google Patents, Research Gate, and PubMed, yielded all the data used in this review paper about the management of psoriasis via various anti-psoriatic agent and nanotechnology approaches. Keywords such as topical, liposomes, niosomes, micro needles, clinical trials, patents, pathogenesis, biosimilars, cytokines, and other pertinent words were investigated. Results Nano technological approaches are gaining prominence since they enable targeted delivery, rapid onset of action with limited systemic exposure. Researchers have investigated innovative, alternative therapeutic approaches that are both secure and efficient for treating psoriatic conditions. Further, the potential role of numerous psoriatic conventional therapies has been explored. The patents granted or in process to address psoriasis via topical route have been well explored. Modern nanotechnology has made it possible for pharmaceuticals to be delivered with improved physical, chemical, pharmacokinetic, and pharmacodynamic qualities. Despite extensive research complete cure for psoriasis is hampered. Conclusion Relying on the extensive literature review, it can be inferred that nanoparticles based novel delivery strategies have the possibility of enhancing the pharmacological activity and eliminating or resolving problems associated with this ailment. The different drug delivery systems available for the treatment of psoriasis along with the clinical trials in different stages, patents in process and granted, the commercialized status of therapeutic molecules, and the future of research in this area have been thoroughly reviewed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.