Abstract
Ultrasound is a versatile and well-established technique using sound waves with frequencies higher than the upper limit of human hearing. Typically, therapeutic and diagnosis ultrasound operate in the frequency range of 500 kHz to 15 MHz with greater depth of penetration into the body. However, to achieve improved spatial resolution, high-frequency ultrasound (>15 MHz) was recently introduced and has shown promise in various fields such as high-resolution imaging for the morphological features of the eye and skin as well as small animal imaging for drug and gene therapy. In addition, high-frequency ultrasound microbeam stimulation has been demonstrated to manipulate single cells or microparticles for the elucidation of physical and functional characteristics of cells with minimal effect on normal cell physiology and activity. Furthermore, integrating machine learning with high-frequency ultrasound enhances diagnostics, including cell classification, cell deformability estimation, and the diagnosis of diabetes and dysnatremia using convolutional neural networks (CNNs). In this paper, current efforts in the use of high-frequency ultrasound from imaging to stimulation as well as the integration of deep learning are reviewed, and potential biomedical and cellular applications are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.