Abstract

In recent years, the field of Supramolecular Chemistry has witnessed tremendous progress owing to the development of versatile optical sensors for the detection of harmful biological analytes. Nitrobenzoxadiazole (NBD) is one such scaffold that has been exploited as fluorescent probes for selective recognition of harmful analytes and their optical imaging in various cell lines including HeLa, PC3, A549, SMMC-7721, MDA-MB-231, HepG2, MFC-7, etc. The NBD-derived molecular probes are majorly synthesized from the chloro derivative of NBD via nucleophilic aromatic substitution. This general NBD moiety ligation method to nucleophiles has been leveraged to develop various derivatives for sensing analytes. NBD-derived probes are extensively used as optical sensors because of remarkable properties like excellent stability, large Stoke’s shift, high efficiency and stability, visible excitation, easy use, low cost, and high quantum yield. This article reviewed NBD-based probes for the years 2017–2023 according to the sensing of analyte(s), including cations, anions, thiols, and small molecules like hydrogen sulfide. The sensing mechanism, designing of the probe, plausible binding mechanism, and biological application of chemosensors are summarized. The real-time application of optical sensors has been discussed by various methods, such as paper strips, molecular logic gates, smartphone detection, development of test kits, etc. This article will update the researchers with the in vivo and in vitro biological applicability of NBD-based molecular probes and challenges the research fraternity to design, propose, and develop better chemosensors in the future possessing commercial utility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call