Abstract

Abstract: Because of its miscellaneous properties, developing less environmentally hazardous and trustworthy methodologies has become one of the most crucial steps toward synthesizing nanoparticles (NPs) among researchers and scientists. In this direction, silver nanoparticles (AgNPs or SNPs) have gained much attention because of their anti-inflammatory, antibacterial, antiviral, and antifungal properties, potential toxicity, and unusual physicochemical features. Concerning the toxicity of silver nanoparticles, silver nanoparticles may prove to be an essential tool against many drugresistant microorganisms and substitutes for antibiotics. However, the synthesis of AgNPs using conventional methods had a toxic impact and caused much damage to the ecosystem. Researchers have used various production techniques to prevent the adverse effects of toxic chemicals, including algae, bacteria, fungi, and plants. This review study has covered recent advancements in green synthetic methodologies for synthesizing AgNPs. This insight provides a comprehensive overview of key findings in the green synthesis of Ag nanoparticles and attempts to focus on factors affecting their synthesis, characterization, applications, potential toxic impact on living organisms, merits/ demerits, and prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.