Abstract
Abstract Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride. They can interconvert under varying pressure and temperature conditions. However, this transformation requires overcoming significant potential barriers in dynamics, which poses great difficulty in determining the c-BN/h-BN phase boundary. This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range (3–6 GPa) for the industrial synthesis of c-BN to constrain the P–T phase boundary of h-BN/c-BN in the pressure–temperature range as much as possible. Based on the analysis of the experimental data, it is determined that the relationship between pressure and temperature conforms to the following equation: P = a + 1 b T . Here, P denotes the pressure (GPa) and T is the temperature (K). The coefficients are a = −3.8±0.8 GPa and b = 229.8±17.1 GPa/K. These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride, which seem to overstate the phase boundary temperature between c-BN and h-BN. The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN, thus optimizing synthesis efficiency and product performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.