Abstract

The so-called receiver multiuser diversity aided multi-stage minimum mean-square error multiuser detector (RMD/MS-MMSE MUD), which was proposed previously by the author, is investigated in the context of the direct-sequence code-division multiple-access (DS-CDMA) and space-division multiple-access (SDMA) systems that employ in- and quadrature-phase (I-Q) modulation schemes. A detection scheme is studied, which is operated in real domain in the principles of successive interference cancellation (SIC). The concept of {\em noise recognition factor} (NRF) is proposed for explaining the efficiency of SIC-type detectors and also for motivating to design other high-efficiency detectors. The achievable bit error rate (BER) performance of the RMD/MS-MMSE MUD is investigated for DS-CDMA and SDMA systems of either full-load or overload, when communicating over Rayleigh fading channels for the SDMA and over either additive white Gaussian noise (AWGN) or Rayleigh fading channels for the DS-CDMA. The studies and performance results show that the RMD/MS-MMSE MUD is a highly promising MUD. It has low implementation complexity and good error performance. Furthermore, it is a high-flexibility detector suitable for various communication systems operated in different communication environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.