Abstract

Subduction systems play a key role in plate tectonics, but the deformation of the crust and uppermost mantle during continental subduction remains poorly understood. Observations of seismic anisotropy can provide constraints on dynamic processes in the crust and uppermost mantle in subduction systems. The subduction zone beneath Peru and Bolivia, where the Nazca plate subducts beneath South America, represents a particularly interesting location to study subduction-related deformation, given the along-strike transition from flat to normally dipping subduction. In this study we constrain seismic anisotropy within and above the subducting slab (including the overriding plate) beneath Peru and Bolivia by examining azimuthal variations in radial and transverse component receiver functions. Because anisotropy-aware receiver function analysis has good lateral resolution and depth constraints, it is complementary to previous studies of anisotropy in this region using shear wave splitting or surface wave tomography. We examine data from long-running permanent stations NNA (near Lima, Peru) and LPAZ (near La Paz, Bolivia), and two dense lines of seismometers from the PULSE and CAUGHT deployments in Peru and Bolivia, respectively. The northern line overlies the Peru flat slab, while the southern line overlies the normally dipping slab beneath Bolivia. We applied harmonic decomposition modeling to constrain the presence, depth, and characteristics of dipping and/or anisotropic interfaces within the crust and upper mantle. We found evidence for varying multi-layer anisotropy, in some cases with dipping symmetry axes, underneath both regions. The presence of multiple layers of anisotropy with distinct geometries that change with depth suggests a highly complex deformation regime associated with subduction beneath the Andes. In particular, our identification of depth-dependent seismic anisotropy within the overlying plate crust implies a change in deformation geometry, dominant mineralogy, and/or rheology with depth, shedding light on the nature of deep crustal deformation during orogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.