Abstract

Fingerprinting based indoor positioning system is gaining more research interest under the umbrella of location-based services. However, existing works have certain limitations in addressing issues such as noisy measurements, high computational complexity, and poor generalization ability. In this work, a random vector functional link network based approach is introduced to address these issues. In the proposed system, a subset of informative features from many randomized noisy features is selected to both reduce the computational complexity and boost the generalization ability. Moreover, the feature selector and predictor are jointly learned iteratively in a single framework based on an augmented Lagrangian method. The proposed system is appealing as it can be naturally fit into parallel or distributed computing environment. Extensive real-world indoor localization experiments are conducted on users with smartphone devices and results demonstrate the superiority of the proposed method over the existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.