Abstract

Female rats require a sufficient amount and pattern of vaginal–cervical stimulation to initiate neuroendocrine changes required for the successful implantation of a fertilized ovum in the uterus. These changes are characterized by twice daily prolactin surges that last 10–12 days. Following a sterile mating, the endocrine changes are still observed, and are termed pseudopregnancy (PSP). The mating stimulation required to initiate these changes prior to pregnancy or PSP has a neural representation, which we have termed the intromission mnemonic. We sought to examine if the formation of the intromission mnemonic is accompanied by alterations in the number or density of synapses in limbic areas by immuno-labeling a pre-synaptic protein, synapsin. Groups of cycling female rats on proestrus day received either 15 or 5 intromissions or mounts-without intromissions from a vasectomized male; an additional time-matched control group was left in the home cage. All females were perfused after 90 min or 8 h. The brains were removed and sliced, and the amygdala and hippocampus immunostained for synapsin, then imaged by confocal microscopy. We found that 90 min after mating sufficient for PSP, the number of synapsin puncta (points of immunoreactivity equivalent to a synapse) was decreased and the intensity of the synapsin staining was increased in the posterodorsal medial amygdala (MePD). A similar reduction of puncta was observed in the CA1 region of the hippocampus, and an increase of intensity occurred in the basolateral amygdala. Spaced intromissions had no effect on synapsin expression anywhere examined. Intensity reductions unrelated to receipt of vaginal–cervical stimulation were observed in the hippocampus. None of these effects were observed after 8 h. Together, these results raise the possibility that synapses in the MePD may be pruned after mating stimulation, resulting in pathway-specific stabilization that contributes to the intromission mnemonic associated with the establishment of PSP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call