Abstract
In some situations, when an external disturbance occurs, humans can rock stably backward and forward by lifting the toe or the heel to keep the upright balance without stepping. Many control schemes have been proposed for standing balance control under external disturbances without stepping. But, in most of them researchers have only considered a flat foot phase. In this paper a framework that includes the foot tilting is presented. This is done by hybrid modeling of the humanoid robot and also using a receding horizon based approach. The decision for the recovery pattern is done based on the evaluation of the Vertical Forces criterion. If the method predicts the tilting of the foot under disturbance, then the optimum trajectories are obtained for upper segments to return the robot to the secure posture in which the foot is flat (home posture). The obtained optimum trajectories are then tracked by a feedback controller. In the context of receding horizon approach the Extrapolated Center of Mass position has been used as the stability constraint. The results demonstrate the success of method to reproduce human-like balance recovery reactions under impulsive disturbances. The simulated results are compared with experimental data reported in the biomechanics literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.