Abstract
Holometabolous insects are predominantly motionless during metamorphosis, when no active feeding is observed and the body is enclosed in a hardened cuticle. These physiological properties as well as undergoing processes resemble embryogenesis, since at the pupal stage organs and systems of the imago are formed. Therefore, recapitulation of the embryonic expression program during metamorphosis could be hypothesized. To assess this hypothesis at the transcriptome level, we have performed a comprehensive analysis of the developmental datasets available in the public domain. Indeed, for most datasets, the pupal gene expression resembles the embryonic rather than the larval pattern, interrupting gradual changes in the transcriptome. Moreover, changes in the transcriptome profile during the pupa-to-imago transition are positively correlated with those at the embryo-to-larvae transition, suggesting that similar expression programs are activated. Gene sets that change their expression level during the larval stage and revert it to the embryonic-like state during the metamorphosis are enriched with genes associated with metabolism and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.