Abstract

Wound repair is a fundamental, conserved mechanism for maintaining tissue homeostasis and shares many parallels with embryonic morphogenesis. Small wounds in simple epithelia rapidly assemble a contractile actomyosin cable at their leading edge, as well as dynamic filopodia that finally knit the wound edges together. Most studies of wound re-epithelialisation have focused on the actin machineries that assemble in the leading edge of front row cells and that resemble the contractile mechanisms that drive morphogenetic episodes, including Drosophila dorsal closure, but, clearly, multiple cell rows back must also contribute for efficient repair of the wound. Here, we examine the role of cells back from the wound edge and show that they also stretch towards the wound and cells anterior-posterior to the wound edge rearrange their junctions with neighbours to drive cell intercalation events. This process in anterior-posterior cells is active and dependent on pulses of actomyosin that lead to ratcheted shrinkage of junctions; the actomyosin pulses are targeted to breaks in the cell polarity protein Par3 at cell vertices. Inhibiting actomyosin dynamics back from the leading edge prevents junction shrinkage and inhibits the wound edge from advancing. These events recapitulate cell rearrangements that occur during germband extension, in which intercalation events drive the elongation of tissues.

Highlights

  • Throughout embryonic development, individual epithelial cells divide, stretch and rearrange in a concerted way to force epithelial sheets to bend and sweep forwards during the morphogenetic episodes that sculpt embryonic shape (Guillot and Lecuit, 2013)

  • We analyse the shape changes that occur in front row cells and those several cell rows back in wounds made in the Drosophila embryo epidermis

  • The wound hole is drawn closed by an actomyosin cable that rapidly assembles in the wound edge cells and contracts a small wound with, for example, initial diameter of 30 μm to within 5% of its original area within 90 min of wounding (Fig. 1A)

Read more

Summary

Introduction

Throughout embryonic development, individual epithelial cells divide, stretch and rearrange in a concerted way to force epithelial sheets to bend and sweep forwards during the morphogenetic episodes that sculpt embryonic shape (Guillot and Lecuit, 2013). Cells anterior-posterior to the wound edge show specific junction shrinking in a pulsatile manner that leads to cell intercalations We wondered whether other mechanisms are used by AP cells to enable release of tension and stretching of the epithelium in response to contraction of the actin cable.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.