Abstract

ObjectiveWe tested the effects of selective reduction of placental blood flow by mesenteric uterine artery branch ligation (MUAL) resulting in fetal growth restriction (FGR). MethodsTimed mated C57BL/6J Day(D) 18 dams were divided into two groups: MUAL (n = 18); and control-sham (n = 18). Pups were delivered on D20, cross-fostered to surrogate CD-1 mothers for 4 weeks, and followed for 8 weeks. Outcome data included birth and placental weight, postnatal growth, placental volume determined by stereology, quantification of placental insulin-like growth factors-1(IGF-1) and IGF-2 and IGF binding proteins(IGFBP 2 and 6) by ELISA and gene expression by qPCR and GeneChip microarray analysis. ResultsCompared with control, MUAL had an 11% reduction in mean birth weight (1.06 ± 0.13 g vs. 0.94 ± 0.13 g, p < 0.001) but no difference in placental weight. At 4 weeks of age, mean body weights of MUAL pups were significantly lower than sham. By 8 weeks, males but not females MUAL mice achieved equivalent mean body weight to control. Placental labyrinth depth, volume, and placental gene expression of IGF-1 and 2 were significantly reduced by MUAL. In contrast, placental protein level of IGFBP-2 and 6 were significantly elevated in the MUAL. Genomic expression analysis demonstrated that MUAL pups significantly up-regulated genes that were associated with apoptosis and growth pathways. ConclusionThis novel mouse animal model of FGR using selective ligation recapitulates multiple characteristics of placental vascular insufficiency (PI) in humans. This is the first non-genetic mouse model of PI which offers its application in transgenic mice to better study the underlying mechanisms in PI. CondensationA new mouse model of placental vascular insufficiency by selective ligation of mesenteric uterine artery branch recapitulates multiple findings observed in human placental vascular insufficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.