Abstract
The RecA protein of Deinococcus radiodurans (RecA(Dr)) is essential for the extreme radiation resistance of this organism. The RecA(Dr) protein has been cloned and expressed in Escherichia coli and purified from this host. In some respects, the RecA(Dr) protein and the E. coli RecA (RecA(Ec)) proteins are close functional homologues. RecA(Dr) forms filaments on single-stranded DNA (ssDNA) that are similar to those formed by the RecA(Ec). The RecA(Dr) protein hydrolyzes ATP and dATP and promotes DNA strand exchange reactions. DNA strand exchange is greatly facilitated by the E. coli SSB protein. As is the case with the E. coli RecA protein, the use of dATP as a cofactor permits more facile displacement of bound SSB protein from ssDNA. However, there are important differences as well. The RecA(Dr) protein promotes ATP- and dATP-dependent reactions with distinctly different pH profiles. Although dATP is hydrolyzed at approximately the same rate at pHs 7.5 and 8.1, dATP supports an efficient DNA strand exchange only at pH 8.1. At both pHs, ATP supports efficient DNA strand exchange through heterologous insertions but dATP does not. Thus, dATP enhances the binding of RecA(Dr) protein to ssDNA and the displacement of ssDNA binding protein, but the hydrolysis of dATP is poorly coupled to DNA strand exchange. The RecA(Dr) protein thus may offer new insights into the role of ATP hydrolysis in the DNA strand exchange reactions promoted by the bacterial RecA proteins. In addition, the RecA(Dr) protein binds much better to duplex DNA than the RecA(Ec) protein, binding preferentially to double-stranded DNA (dsDNA) even when ssDNA is present in the solutions. This may be of significance in the pathways for dsDNA break repair in Deinococcus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.