Abstract
The role of the PI3K pathway in human cancer has been well established, but much of its molecular mechanism, particularly the epigenetic aspect, remains to be defined. We hypothesized that aberrant methylation and hence altered expression of certain unknown important genes induced by the genetically activated PI3K pathway signaling is a major epigenetic mechanism in human tumorigenesis. Through a genome-wide search for such genes that were epigenetically controlled by the PI3K pathway in thyroid cancer cells, we found a wide range of genes with broad functions epigenetically targeted by the PI3K pathway. The most prominent among these genes was REC8, classically known as a meiotic-specific gene, which we found to be robustly down-regulated by the PI3K pathway through hypermethylation. REC8 hypermethylation was strongly associated with genetic alterations and activities of the PI3K pathway in thyroid cancer cell lines, thyroid cancer tumors, and some other human cancers; it was also associated with poor clinicopathological outcomes of thyroid cancer, including advanced disease stages and patient mortality. Demethylating the hypermethylated REC8 gene restored its expression in thyroid cancer cells in which the PI3K pathway was genetically over-activated and induced expression of REC8 protein inhibited the proliferation and colony formation of these cells. These findings are consistent with REC8 being a novel major bona fide tumor suppressor gene and a robust epigenetic target of the PI3K pathway. Aberrant inactivation of REC8 through hypermethylation by the PI3K pathway may represent an important mechanism mediating the oncogenic functions of the PI3K pathway.
Highlights
Follicular cell-derived thyroid cancer is a common endocrine malignancy, which histologically consists of papillary thyroid cancer (PTC), follicular thyroid cancer (FTC) and anaplastic thyroid cancer (ATC) [1,2,3]
As a prominent example of such genes, we identified and characterized the REC8 gene as a novel tumor suppressor gene robustly targeted through aberrant methylation by the PI3K pathway in thyroid cancer and some other cancers, revealing an important novel mechanism mediating the oncogenic function of the PI3K pathway in human tumorigenesis
As in the tumorigenesis of many other human cancers [23], aberrantly activated PI3K pathway driven by its mutations is a fundamental mechanism in thyroid tumorigenesis [6, 9]
Summary
Follicular cell-derived thyroid cancer is a common endocrine malignancy, which histologically consists of papillary thyroid cancer (PTC), follicular thyroid cancer (FTC) and anaplastic thyroid cancer (ATC) [1,2,3]. Mutations in the RAS, PIK3CA, and PTEN genes in the PI3K pathway are the main genetic driving force of this pathway in human cancers, including thyroid cancers, FTC and ATC [8, 9]. Beyond the aberrant signaling of the PI3K pathway itself, much is unknown about the specific genes targeted by this pathway in thyroid tumorigenesis, in the epigenetic respect. DNA methylation is an epigenetic process in which a methyl group is covalently added to the fifth carbon of the cytosine residue and its aberrant occurrence in the promoter areas of genes is a fundamental mechanism of human tumorigenesis [10, 11], including thyroid tumorigenesis [12]. Using a methylated CpG island amplification/CpG island microarray approach, we previously demonstrated the coupling of the MAP kinase pathway to aberrant methylation of a wide range of genes as a fundamental mechanism in the BRAF V600Epromoted tumorigenesis of PTC [16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.